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10 Abstract  

Atlantic bluefin tuna  (Thunnus  thynnus)  are large, highly migratory fish that support important fisheries. 

Oceanic  conditions influence Atlantic  bluefin  tuna distribution and  it has  been hypothesized that stock  

distributions  have shifted in recent years. Distributional shifts  can  affect  regional availability and fleet  

catchability, introducing a  potential bias in fisheries dependent data used for indexing population  

trends. We  developed a  vector auto-regressive spatio-temporal  model  (VAST) to estimate changes in  

bluefin tuna spatial distribution in  US waters and  created standardized indices  of abundance for large (>  

177 cm) and  small  size classes  (≤  177 cm) of fish.  Local-scale  environmental factors (sea surface  

temperature  (SST), ocean  depth) and regional-scale drivers  (e.g., Atlantic Multidecadal Oscillation (AMO)  

and prey biomass)  of spatial distribution were explored.  Results  indicated  that  from  1993  to  2020, 

spatial distribution of  the larger size  class  was highly  variable, but  on average, the total estimated area 

occupied  increased by 96 km2/year and  the  center of gravity shifted 2 km/year north and 3 km/year 

east.   Results  were similar for the smaller size  class fish with an average increase in area  occupied of  71  

km2/year.  The  center of gravity shifted  an average of 1 km/year north and 2 km/year east.  The primary  

factor driving the  spatial shifts for both  large and small fish  was  local-scale SST. Standardized  indices of  

abundance were produced and incorporated SST as a  covariate of local density. In comparison to prior  

standardization results, spatio-temporal indices demonstrated less inter-annual variability and produced  

similar overall trends. This  study advanced our  understanding of  bluefin  tuna spatial distributions and  

generated indices of relative abundance in  US waters of the Northwest Atlantic  that are more robust  to  

spatio-temporal changes in tuna distributions for consideration in future stock assessments.  
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31 Introduction  

Atlantic bluefin tuna  (Thunnus thynnus)  are highly  migratory fish  with  complex spatial and temporal  

distribution patterns.  Their fisheries  are  assessed and  managed as two distinct stocks (eastern and  

western) by the International Commission for the Conservation of Atlantic Tunas (ICCAT) with  the  

management boundary at  the 45º west  meridian (ICCAT 2017, 2020; Kerr et al.  2020). For the western  

stock, conventional and electronic tagging data showed wide-ranging movements of bluefin  tuna  

between feeding and spawning areas,  with seasonal migrations observed between the  northern U.S. 

and Canada  to the Gulf of  Mexico and back  (Galuardi  et al. 2010).  In addition, extensive  mixing of fish 

across the management  boundary was  documented  (Block et al. 2005, Boustany et al. 2008), supported  

by evidence  of catches in  the West Atlantic fisheries  containing large proportions of eastern  Atlantic  

origin fish  (Kerr et al. 2020).  Further, ocean climate is  known  to be  an important  determinant  of the 

distribution and dynamics  of bluefin tuna (Humston  et al. 2000,  Schick et al. 2004, Golet  et al. 2013, 

Druon et al. 2016) with substantial shifts in  the spatial distribution  of bluefin tuna being documented in  

response to  changing ocean conditions  (e.g.,  Golet et  al. 2013, Fromentin et al.  2014, MacKenzie  et al.  

2014, Druon et al. 2016).  

U.S. fisheries  for Atlantic bluefin tuna operate in the  northwest Atlantic, a productive foraging  region for  

bluefin tuna.  Substantial  changes in oceanographic conditions have occurred  in  the region over the last  

two decades,  including an  increase in  sea surface  temperature at a rate that  faster than most  regions of  

the world’s ocean  (SST; Pershing et al.,  2018). Coincident with these changes in fish habitat,  are well 

documented  poleward shifts in  marine taxa  distributions (Nye et al., 2009; Pinsky et  al., 2013).  It is  

hypothesized that similar spatial distribution shifts have occurred for bluefin tuna; however, the exact  

extent and  drivers  of bluefin tuna spatial  distribution remain  unknown (Walter, 2018). For other species,  

distribution shifts in the region have been attributed to local environmental variables (SST and depth);  

regional drivers (e.g., length of summer; Henderson  et al. 2017); basin wide climate indices  (e.g., AMO;  

Nye et al., 2009); prey distribution (Golet et al., 2013) and fishing  effects  (Adams et al., 2018). To  identify  

the primary  causes of distributional change, it is important that  potential  drivers are  evaluated using  a 

consistent  framework, so that estimation models can accurately  quantify  the effect and variation  

attributed  to  the various factors  (Thorson et al., 2017; Perretti and  Thorson, 2019).   

In the West Atlantic region, the recent stock assessments of bluefin tuna relied on two analytical models  

(i.e., Virtual Population Analysis and Stock  Synthesis)  that were fit  to  fishery dependent indices of  

abundance in the form of flag and fleet-specific  catch-per-unit-effort (CPUE) time series  (ICCAT, 2020).  
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62 The assessments were challenged by the need to resolve conflicting trends between  U.S. and  Canadian  

CPUE indices (ICCAT, 2017). Researchers hypothesized that  conflicting trends resulted from bluefin  tuna  

shifting northward away from U.S. fishing areas toward Canadian  waters as a result of  changing ocean  

conditions (Walter, 2018). Shifting spatial distributions can  complicate the interpretation  of data used in  

the stock assessment  due  to systematic change in  fish availability  to regional fishing fleets  (i.e., time-

varying catchability).   The  change in availability  could be  misinterpreted as a stock  decline  in regions  

where the fish have migrated away from, or stock abundance increase in  the regions with increased fish  

availability or density (Wilberg et al. 2010, Link et al  2011).  Stock  assessment analysts explored several  

approaches to reconcile conflicting trends, and  ultimately  decided to incorporate the influence of an  

environmental covariate  (i.e., Atlantic  Multidecadal Oscillation) on catchability for U.S. and Canadian  

handline indices using Stock Synthesis. In contrast, the assessment  team removed the U.S. and Canadian  

commercial handline indices from the Virtual Population Analysis, as divergent trends in the  commercial  

fisheries could not be reconciled within  the model (ICCAT 2020).  

Currently, two standardized indices are  produced from the U.S. handline (i.e., rod and reel) fisheries; 

one indexing  smaller tuna  (66-144 cm) caught by  the  recreational fishery and a second  index of  

commercially-sold, large-sized fish (>177 cm).  Standardization  models applied  to the fishery  dependent  

data did  not  explicitly account for spatio-temporal  changes, but attempted  to  account for spatial  

changes  associated with thermal habitat characteristics  by modeling SST as a covariate of fleet  

catchability (Hansell et al., 2021a; Lauretta et al., 2021).  A potential  problem with the  approach  is that  

SST  may affect  localized fish density or  abundance,  and if so, the approach may  mask  a trend  in 

abundance and attribute  the change in  CPUE as a  catchability effect.   

Here, we  applied a vector  auto-regressive spatio-temporal model (VAST) to  produce indices of  Atlantic  

bluefin tuna relative  abundance in  U.S. waters for two size  classes,  large commercially-sized  (> 177cm)  

and small  tuna caught  by  the recreational fishing fleet  (≤  177  cm).   We evaluated the extent to which  

spatial shifts in  bluefin tuna distribution  occurred, and whether  these shifts can  be attributed to local or  

regional oceanographic factors, or prey  abundance.  The influence  of different environmental covariates 

was assessed  to determine  the effects of  changes in  fleet  catchability  versus  local density.  The  results 

provided new insight into  bluefin  tuna  spatial distribution in  U.S. fishing areas and produced  two indices  

of relative abundance  that are expected to be more  robust to spatio-temporal  drivers of both fish  

availability and fleet  catchability.  We recommend that  future stock assessments take into account these 

data improvements, as  the CPUE series  provide essential data on  fishery and stock trends.   
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93 Methods  

Fishery Data  

The  U.S. Large Pelagics  Survey is a dockside survey of  private vessel and  charter  boat captains who have  

just completed fishing trips directed at large pelagic species  (Foster  et al. 2008). The survey is conducted  

at public fishing access sites that are likely to be used by offshore anglers, and was primarily designed to  

collect detailed catch and  effort data. For this study,  analyses focused on  trips that targeted  bluefin with  

rod and reel from June to  October and  spent less than 24 hours fishing because this is when the majority 

of fishing occurs (Figure 1). Information  collected  by  the survey included: date, fishing location (lat/lon),  

number of fishing lines in  the water, hours fished, and catch by size category  (Lauretta  et al  2020; Table 

1). Past CPUE standardizations did  not incorporate young school (< 66 cm SFL) and small medium size 

classes (145-177 cm SFL).  However, in this study all sizes of bluefin tuna were included in model 

development. For all model runs, bluefin tuna were aggregated into two size categories: 1) small  (≤  177 

cm) and 2) large (> 177 cm).  

Spatio-temporal model  

VAST is a delta-model  that  separates catch into  two components:  1) the probability of a  positive catch,  

and 2) the  positive catch rate. The  probability of a positive catch observation was estimated  using a  

logit-linked linear predictor. Several alternative probability distributions were  explored for the second  

component  that modeled  the catch rate on positive  (at least one  bluefin tuna  was caught) fishing trips,  

including  Poisson, negative binomial,  gamma, log-normal models.  

Probability of a bluefin tuna observation:  

𝑛𝑛𝑗𝑗 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝑃𝑃1,𝑖𝑖 � =  𝛽𝛽1(𝑙𝑙𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜔𝜔1(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜀𝜀1�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖 � + � 𝜆𝜆1(𝑗𝑗, 𝑐𝑐𝑖𝑖)𝑥𝑥(𝑗𝑗, 𝑠𝑠𝑖𝑖 , 𝑙𝑙𝑖𝑖 )𝑄𝑄(𝑙𝑙, 𝑘𝑘1)  
𝑗𝑗=1 

Bluefin  tuna  catch rate on  positive trips:   

𝑛𝑛𝑗𝑗 

𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃2,𝑖𝑖 � =  𝛽𝛽2(𝑙𝑙𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜔𝜔2(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜀𝜀2�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖� + � 𝜆𝜆2(𝑗𝑗, 𝑐𝑐𝑖𝑖)𝑥𝑥(𝑗𝑗, 𝑠𝑠𝑖𝑖 , 𝑙𝑙𝑖𝑖)𝑄𝑄(𝑙𝑙, 𝑘𝑘2)  
𝑗𝑗=1 

Where  P1  is the probability of positive  catch,  P2  is the probability of the catch given the  catch is positive,  

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 



 𝛽𝛽(𝑙𝑙𝑖𝑖)  is  the int ercept  for each year  t  and length-group  c  and is  modeled  as a random walk,  𝜔𝜔(𝑠𝑠𝑖𝑖)  is a 

time-invariant spatial autocorrelated variation for knot  s and length-group  c,   𝜀𝜀�𝑠𝑠𝑖𝑖,𝑐𝑐𝑖𝑖,𝑙𝑙𝑖𝑖 �  is  a time-varying 

spatial-temporal autocorrelated variation for knot  s  and length-group  c  in year  t,  𝜆𝜆(𝑗𝑗, 𝑐𝑐𝑖𝑖 )  is the effect of  

covariate  j  on length group c  ,  nj  is  the number of covariates and  𝑥𝑥(𝑗𝑗, 𝑠𝑠𝑖𝑖 , 𝑙𝑙𝑖𝑖 )  is the value of covariate  j  in  

knot  s  in year  t,  𝑄𝑄(𝑙𝑙, 𝑘𝑘)  is the fixed effect estimates for  catchability, and the integer subscripts denote  

the model component  (1:  presence/absence, 2: non-zero density)  for observation  i.  

The spatial processes (𝜔𝜔1(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖)  ;  𝜔𝜔2(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖)) were modeled as Gaussian  Markov random  fields with 

correlation over two spatial dimensions and among fish size  (e.g.,  ≤ 177  or  > 177 cm).  

𝑣𝑣𝑣𝑣𝑐𝑐�𝛺𝛺𝑝𝑝�~𝐺𝐺𝐺𝐺𝐺𝐺(0, 𝐺𝐺𝑝𝑝⨂𝑉𝑉𝑤𝑤𝑝𝑝)  

Where  𝛺𝛺𝑝𝑝is a matrix composed of  𝜔𝜔2(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖)  at every knot  s  and length bin  c, 𝐺𝐺𝑝𝑝  is correlation between  

knots, and  𝑉𝑉𝑤𝑤𝑝𝑝  is correlation between length bins.  

𝑉𝑉𝑤𝑤𝑝𝑝 = 𝐿𝐿 𝑇𝑇
𝑤𝑤𝑝𝑝𝐿𝐿  

𝑤𝑤𝑝𝑝  

Where  𝐿𝐿𝑤𝑤𝑝𝑝  is a  matrix representing covariance among length bins. The spatial  covariance between  

knots  s  and  s *  was modeled as a Matern process.  

1 
𝐺𝐺𝑝𝑝(𝑠𝑠, 𝑠𝑠∗) =  𝑣𝑣−1 (𝐾𝐾 𝐻𝐻|  𝑠𝑠 − 𝑠𝑠∗|)𝑣𝑣𝐾𝐾 (𝐾𝐾 𝐻𝐻|  𝑠𝑠 − 𝑠𝑠∗|)  

2 𝛵𝛵(𝑣𝑣) 𝑝𝑝 𝑣𝑣 𝑝𝑝

Where  v  is a smoothness parameter that is fixed at  1,  𝐾𝐾𝑝𝑝  controls  the distance correlation and reduces  

to zero,  𝐾𝐾𝑣𝑣  is a  Bessel function and  H  is a  two dimensional anisotropic distance function. The spatio-

temporal processes (𝜀𝜀1,2�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖 �) were fit independently for each year, and were modeled with 

Gaussian  Markov random fields assuming a Matern covariance.   

In addition  to catchability  covariate effects, estimated values of  the fixed and random effects predicted  

local density (d(s,  t)) for knot  s  and length-group  c  in year  t.   

𝑑𝑑(𝑠𝑠, 𝑙𝑙) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1  �𝛽𝛽1(𝑙𝑙𝑖𝑖 , 𝑐𝑐𝑖𝑖) + 𝜔𝜔1(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖 ) + 𝜀𝜀1�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖 �� ×  𝑣𝑣𝑥𝑥𝑒𝑒 �𝛽𝛽2(𝑙𝑙𝑖𝑖 , 𝑐𝑐𝑖𝑖 ) + 𝜔𝜔2(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖 ) + 𝜀𝜀2�𝑠𝑠𝑖𝑖,, 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖��  

 

The index of  abundance (B(t)) is calculated as the sum of the density of each knot using  an area 
weighted approach:  
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𝑛𝑛𝑠𝑠 

𝐵𝐵(𝑙𝑙) = �(𝑎𝑎(𝑠𝑠) × 𝑑𝑑(𝑠𝑠, 𝑙𝑙))  
𝑠𝑠  =1 

Where  B(t) is  the area weighted density  for each knot in year  t  throughout the specific domain, which in  

this study is Virginia to Maine and  a(s) is the area of knot s. A  mesh approach (200 knots) which  allows  

for anisotropy was used  to fit  the model. Parameter estimation  used Template Model Builder  

(Kristensen et al. 2016) and  the R  program (R Core Team 2020).  Model  convergence was examined by  

ensuring the  maximum  gradient of the  likelihood estimation was less than 0.0001 for all parameters and  

the Hessian matrix was  positive  definite.  

Explanatory covariates  

We explored local and regional covariates as drivers  of catchability and  density. Local covariates varied 

across space,  while regional covariates  were univariate and represented temporal changes affecting  the  

stock.  Number of fishing lines were explored as an influence on catchability, while local covariates,  

month,  SST and depth were explored as drivers of catchability or density  (Figure 2).  Bathymetry data  

acquired from the marmap package in  R  (Pante and  Simon-Bouchet, 2013) was used  to estimate  depth  

at each fishing location,  while satellite-derived estimates of weekly mean SST were matched to each  

fishing event  on a one-degree latitude by one-degree longitude scale (NOAA 2021a). All local covariates  

were fit with polynomial splines  to allow for non-linear relationships, which are common in ecological 

data.  The optimal number  of knots used to fit each polynomial spline was determined automatically by  

the  Splines2  package in R,  which accounts  for degrees of freedom and the quantiles of the explanatory  

covariates (Wang 2021). Regional covariates were  estimated as annual time series and included annual  

deviations in  SST and prey  abundance (Figure 3).  Deviations in SST  were estimated as the AMO index,  

matching the time series  used in the last western bluefin tuna stock assessment, applied to large fish 

index analysis (ICCAT, 2020; Hansell et  al. 2020).  In characterizing  prey abundance, we focused on a  key  

prey of bluefin tuna, Atlantic herring. Atlantic herring biomass and  estimates were obtained from the  

2020 Atlantic herring stock assessment  (Golet  et al. 2013; NOAA, 2021b).   

In VAST, estimated spatial random fields were expected  to account for the changes in distribution over  

the time series and  capture residual patterns that  cannot be attributed to fixed effects  (explanatory  

covariates).  Thus, we  used the approach to determine the importance of each variable in potential 

distribution shifts by setting the spatial  effects of  the model to  zero and generating a time series of  

center-of-gravity estimates. The center-of-gravity estimates from the model without  the random fields  

142 

143 

144 

146 

147 

148 

149 

151 

152 

153 

154 

156 

157 

158 

159 

161 

162 

163 

164 

166 

167 

168 

169 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

175

180

185

190

195

200

171 were then compared  to the model with  random fields to determine the amount of variation caused by  

each covariate; this process is referred to as counterfactual analysis (Pearl, 2009; Perretti and Thorson,  

2019).  Collinearity of covariates was examined using  generalized variance-inflation factor  (GVIF) scores.  

Any covariate with a score greater  than  three was removed, and the GVIFs were recalculated (Zuur, et  

al. 2012). For  CPUE standardization, Akaike Information Criterion (AIC) scores were used to determine  

the best-fitting model.  If  AIC scores were within  two units of one another, the most  parsimonious model  

was selected (Burnham and Anderson, 2004). AIC was used to  determine if a covariate improved model  

information content  as an index  for catchability  versus  density.  
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179 Results  

CPUE was measured  as the number  of fish caught per hour  (catch/hour; Table S1).  A  gamma  probability  

function  was selected to model the distribution of positive  catch rates. All models using CPUE and  

gamma distributions  converged  and diagnostics  suggested  no major issues with model  performance  

occurred.  SST and  month  were collinear; therefore,  month was excluded from model runs  (Figure S1   –  

S4; Table S2 & S3).   

A model fit with all local and regional environmental covariates  suggested that  from 1993  to  2020, large  

fish spatial distributions  varied notably;  however, on  average, the  area of occupancy increased by 96.4  

km2/year, and the  center  of gravity shifted  north and east at an average rate of 2.3 km/year and 3  

km/year (Figure  4;6-7).  We  observed similar patterns for small fish distributions  with the area of  

occupancy  increasing on average 70.6  km2/year, and the center of gravity shifting  north and east at an  

average rate  of 1.1 km/year and 1.7 km/year (Figure 5-7).  Counterfactual analysis suggested  that the  

covariates in  the  model accounted for  the majority of observed spatial distribution deviations (Figure  8).  

Sensitivity runs suggested that  SST  was the  primary  driver of observed spatial  distribution shifts, with  

depth, AMO,  and herring abundance having considerably less influence  (Figure  9).  

The best-fit  model, as determined by AIC,  included SST as a covariate  for density (Table 2). Estimated  

indices of bluefin tuna abundance, from the best fit  model,  showed variability  throughout the time  

series  for both large and small  size classes; however,  an increased trend in  the large fish index was  clear  

after 2013  (Figure 10). Compared  to the conventional index, the large fish index from VAST produced a  

lower abundance  estimate in  the 1990’s and early 2000’s while producing higher estimates from 2004 to  

2010.  The small fish index from VAST produced lower abundance estimates  at the beginning and end of  

the  time series (Figure  10).  
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225

201 Discussion:   

The VAST model provided a single integrated spatio-temporal framework to examine the spatial  

distribution changes of bluefin tuna and estimate indices of relative abundance  by size. VAST  estimated 

that the area  of occupancy increased over the entire  time period  and the center of gravity  shifted  

northeast for both large and small bluefin. These results  confirm  previous hypotheses that  the  

population of bluefin  tuna  has shifted  northward  away from  U.S. fishing areas  towards Canadian waters  

(Walter et al.  2018; Hansell et al. 2020).   

Understanding the underlying mechanisms of tuna spatial distributions  is  essential to  account for  

changes in fish availability,  particularly in terms of fisheries management and fleet  catch allocations  

(Link et al. 2011). In  this study, the primary driver of  bluefin tuna  distribution  was  local  SST, which  may  

have multiple influences on Atlantic bluefin tuna and their prey (Table 2; Figure  9). Previous work has 

demonstrated the importance SST plays in  bluefin tuna habitat/distribution.  Thus, it  was not surprising  

our analyses  estimated  SST  as  an  important driver  of  bluefin tuna spatial  distribution (Teo et al. 2007;  

Schick  et al. 2004; Golet et  al 2013). Additionally, the  North Atlantic has experienced substantial 

increases in SST in recent years and these increases have been linked to the northward shift  of many  

taxa in the region (Nye  et  al. 2009; Pinsky et al. 2013).  Our results  corroborate those observed patterns  

for Atlantic bluefin  tuna.   

We expected  herring abundance or the AMO index to  have more  of an effect on bluefin tuna  

distribution estimates, given previous work showing  that both of  these covariates are important in  

bluefin tuna  distribution (Golet  et al. 2013; Faillettaz et al. 2019). For herring,  differences in this study  

could  be the  result  of  scale,  because  past studies have examined fine scale data  while  this study  

examined  data at an annual time step  (Golet et al. 2013). The lack of influence of  the AMO in this study  

could  be due  to the short  time series of  data (1993-2020) evaluated. During this time period,  the AMO 

was in a consistent warm phase (Figure  3). Additionally, in fitting the AMO as a  climate indicator in the  

stock assessment,  it  was estimated to  have a stronger relationship with Canadian indices then  US  

indices. The  differential effect on northern areas may  be a factor contributing to  a lack of estimated  

effect in the  U.S. fishing areas  (Hansell  et al., 2020).  Despite identifying the primary driver of spatial  

distribution change  (SST) it is possible other environmental drivers (e.g.,  Atlantic Meridional Overturning 

Circulation),  or prey species could be influencing bluefin distribution. Especially since bluefin tuna have 
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complex migration patterns, are top predators with a diverse diet  and the data in this study only focuses  

on a short seasonal window (June  –  October)  when the fish are available to  the  fishery.   

In the  U.S., a  reliable fisheries independent survey is  not available  for bluefin tuna and thus,  this study  

relied  on fisheries dependent  data. In  the absence of  surveys, fisheries  data is commonly used as an  

input to stock assessment; however, fishing locations are not  chosen at random (Maunder  and Punt,  

2004). Thus, it  was difficult to determine if spatial distribution shifts  were related to  changes  in fish 

distribution or changes in fishing behavior.  

Our results suggest that abundance of  small fish in the area  was  highly variable from one year to the 

next, but a bundance of large fish  increased in recent  years. These findings are  consistent with previously  

developed indices of abundance for bluefin tuna  (Figure  10). Results also supported  previous  

hypotheses  that spatial distribution changes have occurred in both  the population and  the fishery  

(Walter, 2018; Figures  4-7),  validating the  use of a spatio-temporal model for CPUE standardization.  The  

use of spatio-temporal approach is further validated due to low captures  (< 100 fish), in the Large Pelgics  

Survey, in  certain years  (Table S1). VAST  can handle  low sample sizes and  provide estimates for missing  

covariates  (Thorson, 2019); however,  despite  this ability  model results for these years  (2003, 2006, 

2008,  2014)  are probably  more uncertain and should be viewed with  caution.  

 The VAST model presented here improved  upon previous conventional CPUE  standardization  

approaches that modeled  size classes separately  and accounted for spatial changes by incorporating SST  

(Hansell et al., 2021; Lauretta et al., 2021).  The time series of abundance produced from VAST were  

similar to previous methods; however, there were some differences in the large fish index in the early 

2000 and the small fish index near the end of  the time series  (Figure  10). Potential differences in relative  

abundance were not necessarily the result of  model structure but  could  be the  result of data decisions. 

For example,  past indices of abundance  used  captures as the  explanatory variable and effort  as an  

offset, while the VAST model used CPUE  (catch/hours). Typically, it is not appropriate to use hours in  the  

denominator  of CPUE because it assumes each  hour of fishing has the same probability of  catching a fish  

(Peterson et  al., 2017).  However, we believe this is not a substantial problem  here because  all fishing  

trips used were relatively short (< 24  hours).  The index applies to  the  rod and reel fishery where bait  was 

constantly checked,  and fishermen chum to attract fish. Another  difference between the VAST model 

and past standardizations was that  two  additional size classes are included in the model for small fish (<  
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259 66 cm and 145-177 cm; Table 1). Lastly,  the large fish  index used  all trips from Virginia to  Maine, while  

the  previous  model focused solely on trips in  the Gulf of Maine  (Hansell et al., 2020).   

We recommend that future assessments should explore incorporating the indices produced  here into  

the stock assessment  because geo-statistical approaches like VAST are expected to  yield  more accurate  

indices of abundance  (Shelton et al. 2014). Additionally, using  these models  in assessments  may  lead to  

lower retrospective bias  (a  notable  problem identified during  the last stock assessment,  particularly the  

VPA), and potentially  provide more accurate biomass estimates  compared to  design based index-driven  

models  (Cao  et al. 2017). Further, VAST  supported  the use of  local SST  as being an  important driver  of  

density and  distribution changes; however, current standardization models incorporate SST  as a  

covariate  of catchability. Thus, current  approaches  may be  detrending the effect of SST, which could  

alter year effect estimates. We anticipate this approach will continue  to be useful as sea temperatures  in  

the Northeast U.S. are projected to continue to increase at three times the global rate of  change (Saba  

et al. 2016).   

Future work should also explore combining  the results presented  here with commercial fisheries data in 

Canada. Combining data into a joint index would create a single  time series  that could resolve residual  

patterns between  the two  fleets  (Hansell et al., 2020). A similar approach of a  combined index was 

applied to  U.S. and  Mexican longline fisheries that target bluefin  tuna in  the Gulf  of Mexico (Lauretta  et 

al., 2021). Previously, a joint index between  U.S. and Canadian fisheries was explored  by  the ICCAT Index  

Working Group; however, it was  not recommended  due to differences in  catch  distribution between the 

countries (Hansell et al.,  2021). VAST  can potentially  reconcile this issue because it has the ability to  

combine multiple data  types into an integrated modeling framework (Gruss et  al., 2019). Additionally,  

adding the Canadian data into VAST could allow for the exploration of larger-scale  distribution shifts and  

potential drivers of  bluefin  tuna habitat  that are more reflective of the population as a  whole.  

In conclusion, the VAST model provided  a single framework to estimate distribution changes  and indices  

of bluefin tuna relative  abundance in US waters. The  model estimated  that for both large and small fish,  

the area occupied increased, and  the center of  gravity shifted northeast. Our results highlighted local  

SST  as a  primary driver of the  estimated  spatial shifts.  Compared to  conventional standardization  

models, spatio-temporal indices showed less inter-annual variability between year effects,  but produced  

similar overall trends.  Results are expected to increase the understanding of bluefin tuna spatial  

distribution in U.S. waters  and produce  indices that are more robust to spatio-temporal changes.  The 
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289 findings  have implications  for the management of  bluefin  tuna in  terms of stock status determinations  

and sustainable  catch forecasts, and we recommend  that the indices produced  be  directly incorporated  

into future stock assessments.  291 
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Table 1. Size categories for Atlantic Bluefin tuna defined in the Large Pelagics Survey. 

Size Categories Size 

Young school < 26 in (66cm) SFL 

School 26-44 in (66-114 cm) SFL 

Large school 45-56 in (115-144 cm) SFL 

Small medium 57-69 in (145-177 cm) SFL 

Large medium 70-76 n (178-195 cm) SFL 

Giant > 76 in (195 cm) SFL 

Table 2. AIC step-wise model selection for VAST catch per unit effort (CPUE) standardization. The table 
shows the influence of each covariate on model selection. The null model does not include any 
covariates and delta AIC represents the change each covariate has on overall AIC. 

Covariate 
Density Catchability 

AIC ∆ AIC AIC ∆AIC 

Null 16489.75 

Number of Lines - 15977.04 -512.71 

SST 15931.1 -558.65 15969.25 -520.5 

Depth 16091.89 -397.86 16184.37 -305.38 

AMO 16091.89 -397.86 16271.19 -218.56 

Herring 16111.23 -378.52 16277.14 -212.61 



 

 

   

 

 

 

 

 

 

Figure 1. Spatial footprint and number of hours targeting Atlantic bluefin tuna. 



 

 

   
   

 

 

 

 

   
 

Figure 2. Distribution of local covariates, sea surface temperature (SST) and depth, explored in VAST 
models examining the spatio-temporal dynamics of Atlantic bluefin tuna. 

Figure 3. Regional time series explored in VAST models examining the spatio-temporal dynamics of 
Atlantic bluefin tuna. 



 

        
 

Figure 4: For large Atlantic Bluefin tuna, log density estimates from VAST model fit with all covariates 
(SST, AMO, herring abundance). 



 

    
   

 

Figure 5: For small Atlantic Bluefin tuna, log density estimates from VAST model fit Gaussian Markov 
random fields and all covariates (SST, AMO, herring abundance). 



 

   
   

Figure 6. VAST effective area occupied estimates for large and small Atlantic Bluefin tuna. The model is 
fit with Gaussian Markov random fields and all covariates (SST, AMO, herring abundance). 



 

      
    

Figure 7. VAST spatial distribution changes estimates for large and small Atlantic bluefin tuna. The model 
is fit with Gaussian Markov random fields and all covariates (SST, AMO, herring abundance). 



 

   
   

   

 

Figure 8. Counterfactual analysis exploring if covariates can explain observed distribution shifts. Blue 
represents VAST model runs used to estimate distribution shifts and fit with the Gaussian Markov 
random fields (GMRF), while red is the model run with only covariates (fixed effects). 



 

 
  

  
  

Figure 9. Counterfactual analysis sensitivity runs. Red is a VAST model without Gaussian Markov random 
fields (GMRF) and covariates. Following model runs continuously add covariates, blues adds sea surface 
temperature (SST), green adds local covariates (SST and depth), orange adds local and regional (AMO 
and herring abundance) covariates. 



 

Figure 10. For Atlantic  bluefin tuna, standardized indices of abundance from previous generalized 
models (GM)  and the spatio-temporal VAST model. Error bars are +/- two standard error.  The VAST 
model includes SST as an effect on density.  
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